Devendra Vishwakarma2016-06-23T11:32:35+00:00Factoring is nothing but breaking down a number or a polynomial into product of its factor which when multiplied together gives the original.
Factoring Formula for sum/difference of two nth powers are,
PRODUCT FORMULAS
a2−b2=(a−b)(a+b)a2−b2=(a−b)(a+b)
a3−b3=(a−b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2)
a3+b3=(a+b)(a2−ab+b2)a3+b3=(a+b)(a2−ab+b2)
a4−b4=(a−b)(a+b)(a2−ab+b2)a4−b4=(a−b)(a+b)(a2−ab+b2)
a5−b5=(a−b)(a4+a3b+a2b2+ab3+b4)a5−b5=(a−b)(a4+a3b+a2b2+ab3+b4)
Product Formulas
(a+b)2=a2+2ab+b2(a+b)2=a2+2ab+b2
(a−b)2=a2−2ab+b2(a−b)2=a2−2ab+b2
(a+b)3=a3+3a2b+3ab2+b3(a+b)3=a3+3a2b+3ab2+b3
(a−b)3=a3−3a2b+3ab2−b3(a−b)3=a3−3a2b+3ab2−b3
(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)4=a4+4a3b+6a2b2+4ab3+b4
(a−b)4=a4−4a3b+6a2b2−4ab3+b4(a−b)4=a4−4a3b+6a2b2−4ab3+b4
(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
(a+b+c+…)2=a2+b2+c2+…+2(ab+ac+bc+…)